The only agent that thinks for itself

Autonomous Monitoring with self-learning AI built-in, operating independently across your entire stack.

Unlimited Metrics & Logs
Machine learning & MCP
5% CPU, 150MB RAM
3GB disk, >1 year retention
800+ integrations, zero config
Dashboards, alerts out of the box
> Discover Netdata Agents
Centralized metrics streaming and storage

Aggregate metrics from multiple agents into centralized Parent nodes for unified monitoring across your infrastructure.

Stream from unlimited agents
Long-term data retention
High availability clustering
Data replication & backup
Scalable architecture
Enterprise-grade security
> Learn about Parents
Fully managed cloud platform

Access your monitoring data from anywhere with our SaaS platform. No infrastructure to manage, automatic updates, and global availability.

Zero infrastructure management
99.9% uptime SLA
Global data centers
Automatic updates & patches
Enterprise SSO & RBAC
SOC2 & ISO certified
> Explore Netdata Cloud
Deploy Netdata Cloud in your infrastructure

Run the full Netdata Cloud platform on-premises for complete data sovereignty and compliance with your security policies.

Complete data sovereignty
Air-gapped deployment
Custom compliance controls
Private network integration
Dedicated support team
Kubernetes & Docker support
> Learn about Cloud On-Premises
Powerful, intuitive monitoring interface

Modern, responsive UI built for real-time troubleshooting with customizable dashboards and advanced visualization capabilities.

Real-time chart updates
Customizable dashboards
Dark & light themes
Advanced filtering & search
Responsive on all devices
Collaboration features
> Explore Netdata UI
Monitor on the go

Native iOS and Android apps bring full monitoring capabilities to your mobile device with real-time alerts and notifications.

iOS & Android apps
Push notifications
Touch-optimized interface
Offline data access
Biometric authentication
Widget support
> Download apps

Best energy efficiency

True real-time per-second

100% automated zero config

Centralized observability

Multi-year retention

High availability built-in

Zero maintenance

Always up-to-date

Enterprise security

Complete data control

Air-gap ready

Compliance certified

Millisecond responsiveness

Infinite zoom & pan

Works on any device

Native performance

Instant alerts

Monitor anywhere

80% Faster Incident Resolution
AI-powered troubleshooting from detection, to root cause and blast radius identification, to reporting.
True Real-Time and Simple, even at Scale
Linearly and infinitely scalable full-stack observability, that can be deployed even mid-crisis.
90% Cost Reduction, Full Fidelity
Instead of centralizing the data, Netdata distributes the code, eliminating pipelines and complexity.
Control Without Surrender
SOC 2 Type 2 certified with every metric kept on your infrastructure.
Integrations

800+ collectors and notification channels, auto-discovered and ready out of the box.

800+ data collectors
Auto-discovery & zero config
Cloud, infra, app protocols
Notifications out of the box
> Explore integrations
Real Results
46% Cost Reduction

Reduced monitoring costs by 46% while cutting staff overhead by 67%.

— Leonardo Antunez, Codyas

Zero Pipeline

No data shipping. No central storage costs. Query at the edge.

From Our Users
"Out-of-the-Box"

So many out-of-the-box features! I mostly don't have to develop anything.

— Simon Beginn, LANCOM Systems

No Query Language

Point-and-click troubleshooting. No PromQL, no LogQL, no learning curve.

Enterprise Ready
67% Less Staff, 46% Cost Cut

Enterprise efficiency without enterprise complexity—real ROI from day one.

— Leonardo Antunez, Codyas

SOC 2 Type 2 Certified

Zero data egress. Only metadata reaches the cloud. Your metrics stay on your infrastructure.

Full Coverage
800+ Collectors

Auto-discovered and configured. No manual setup required.

Any Notification Channel

Slack, PagerDuty, Teams, email, webhooks—all built-in.

Built for the People Who Get Paged
Because 3am alerts deserve instant answers, not hour-long hunts.
Every Industry Has Rules. We Master Them.
See how healthcare, finance, and government teams cut monitoring costs 90% while staying audit-ready.
Monitor Any Technology. Configure Nothing.
Install the agent. It already knows your stack.
From Our Users
"A Rare Unicorn"

Netdata gives more than you invest in it. A rare unicorn that obeys the Pareto rule.

— Eduard Porquet Mateu, TMB Barcelona

99% Downtime Reduction

Reduced website downtime by 99% and cloud bill by 30% using Netdata alerts.

— Falkland Islands Government

Real Savings
30% Cloud Cost Reduction

Optimized resource allocation based on Netdata alerts cut cloud spending by 30%.

— Falkland Islands Government

46% Cost Cut

Reduced monitoring staff by 67% while cutting operational costs by 46%.

— Codyas

Real Coverage
"Plugin for Everything"

Netdata has agent capacity or a plugin for everything, including Windows and Kubernetes.

— Eduard Porquet Mateu, TMB Barcelona

"Out-of-the-Box"

So many out-of-the-box features! I mostly don't have to develop anything.

— Simon Beginn, LANCOM Systems

Real Speed
Troubleshooting in 30 Seconds

From 2-3 minutes to 30 seconds—instant visibility into any node issue.

— Matthew Artist, Nodecraft

20% Downtime Reduction

20% less downtime and 40% budget optimization from out-of-the-box monitoring.

— Simon Beginn, LANCOM Systems

Pay per Node. Unlimited Everything Else.

One price per node. Unlimited metrics, logs, users, and retention. No per-GB surprises.

Free tier—forever
No metric limits or caps
Retention you control
Cancel anytime
> See pricing plans
What's Your Monitoring Really Costing You?

Most teams overpay by 40-60%. Let's find out why.

Expose hidden metric charges
Calculate tool consolidation
Customers report 30-67% savings
Results in under 60 seconds
> See what you're really paying
Your Infrastructure Is Unique. Let's Talk.

Because monitoring 10 nodes is different from monitoring 10,000.

On-prem & air-gapped deployment
Volume pricing & agreements
Architecture review for your scale
Compliance & security support
> Start a conversation
Monitoring That Sells Itself

Deploy in minutes. Impress clients in hours. Earn recurring revenue for years.

30-second live demos close deals
Zero config = zero support burden
Competitive margins & deal protection
Response in 48 hours
> Apply to partner
Per-Second Metrics at Homelab Prices

Same engine, same dashboards, same ML. Just priced for tinkerers.

Community: Free forever · 5 nodes · non-commercial
Homelab: $90/yr · unlimited nodes · fair usage
> Start monitoring your lab—free
$1,000 Per Referral. Unlimited Referrals.

Your colleagues get 10% off. You get 10% commission. Everyone wins.

10% of subscriptions, up to $1,000 each
Track earnings inside Netdata Cloud
PayPal/Venmo payouts in 3-4 weeks
No caps, no complexity
> Get your referral link
Cost Proof
40% Budget Optimization

"Netdata's significant positive impact" — LANCOM Systems

Calculate Your Savings

Compare vs Datadog, Grafana, Dynatrace

Savings Proof
46% Cost Reduction

"Cut costs by 46%, staff by 67%" — Codyas

30% Cloud Bill Savings

"Reduced cloud bill by 30%" — Falkland Islands Gov

Enterprise Proof
"Better Than Combined Alternatives"

"Better observability with Netdata than combining other tools." — TMB Barcelona

Real Engineers, <24h Response

DPA, SLAs, on-prem, volume pricing

Why Partners Win
Demo Live Infrastructure

One command, 30 seconds, real data—no sandbox needed

Zero Tickets, High Margins

Auto-config + per-node pricing = predictable profit

Homelab Ready
"Absolutely Incredible"

"We tested every monitoring system under the sun." — Benjamin Gabler, CEO Rocket.Net

76k+ GitHub Stars

3rd most starred monitoring project

Worth Recommending
Product That Delivers

Customers report 40-67% cost cuts, 99% downtime reduction

Zero Risk to Your Rep

Free tier lets them try before they buy

Never Fight Fires Alone

Docs, community, and expert help—pick your path to resolution.

Learn.netdata.cloud docs
Discord, Forums, GitHub
Premium support available
> Get answers now
60 Seconds to First Dashboard

One command to install. Zero config. 850+ integrations documented.

Linux, Windows, K8s, Docker
Auto-discovers your stack
> Read our documentation
See Netdata in Action

Watch real-time monitoring in action—demos, tutorials, and engineering deep dives.

Product demos and walkthroughs
Real infrastructure, not staged
> Start with the 3-minute tour
Level Up Your Monitoring
Real problems. Real solutions. 112+ guides from basic monitoring to AI observability.
76,000+ Engineers Strong
615+ contributors. 1.5M daily downloads. One mission: simplify observability.
Per-Second. 90% Cheaper. Data Stays Home.
Side-by-side comparisons: costs, real-time granularity, and data sovereignty for every major tool.

See why teams switch from Datadog, Prometheus, Grafana, and more.

> Browse all comparisons
Edge-Native Observability, Born Open Source
Per-second visibility, ML on every metric, and data that never leaves your infrastructure.
Founded in 2016
615+ contributors worldwide
Remote-first, engineering-driven
Open source first
> Read our story
Promises We Publish—and Prove
12 principles backed by open code, independent validation, and measurable outcomes.
Open source, peer-reviewed
Zero config, instant value
Data sovereignty by design
Aligned pricing, no surprises
> See all 12 principles
Edge-Native, AI-Ready, 100% Open
76k+ stars. Full ML, AI, and automation—GPLv3+, not premium add-ons.
76,000+ GitHub stars
GPLv3+ licensed forever
ML on every metric, included
Zero vendor lock-in
> Explore our open source
Build Real-Time Observability for the World
Remote-first team shipping per-second monitoring with ML on every metric.
Remote-first, fully distributed
Open source (76k+ stars)
Challenging technical problems
Your code on millions of systems
> See open roles
Talk to a Netdata Human in <24 Hours
Sales, partnerships, press, or professional services—real engineers, fast answers.
Discuss your observability needs
Pricing and volume discounts
Partnership opportunities
Media and press inquiries
> Book a conversation
Your Data. Your Rules.
On-prem data, cloud control plane, transparent terms.
Trust & Scale
76,000+ GitHub Stars

One of the most popular open-source monitoring projects

SOC 2 Type 2 Certified

Enterprise-grade security and compliance

Data Sovereignty

Your metrics stay on your infrastructure

Validated
University of Amsterdam

"Most energy-efficient monitoring solution" — ICSOC 2023, peer-reviewed

ADASTEC (Autonomous Driving)

"Doesn't miss alerts—mission-critical trust for safety software"

Community Stats
615+ Contributors

Global community improving monitoring for everyone

1.5M+ Downloads/Day

Trusted by teams worldwide

GPLv3+ Licensed

Free forever, fully open source agent

Why Join?
Remote-First

Work from anywhere, async-friendly culture

Impact at Scale

Your work helps millions of systems

Compliance
SOC 2 Type 2

Audited security controls

GDPR Ready

Data stays on your infrastructure

Blog

Understanding Entropy: Key To Secure Cryptography & Randomness

Delving into the Randomness that Powers Our Systems
by Satyadeep Ashwathnarayana · May 3, 2023

stacked-netdata

Entropy is a measure of the randomness or unpredictability of data. In the context of cryptography, entropy is used to generate random numbers or keys that are essential for secure communication and encryption. Without a good source of entropy, cryptographic protocols can become vulnerable to attacks that exploit the predictability of the generated keys.

What is Entropy?

In most operating systems, entropy is generated by collecting random events from various sources, such as hardware interrupts, mouse movements, keyboard presses, and disk activity. These events are fed into a pool of entropy, which is then used to generate random numbers when needed.

The /dev/random device in Linux is one such source of entropy, and it provides an interface for programs to access the pool of entropy. When a program requests random numbers, it reads from the /dev/random device, which blocks until enough entropy is available to generate the requested numbers. This ensures that the generated numbers are truly random and not predictable.

However, if the pool of entropy gets depleted, the /dev/random device may block indefinitely, causing programs that rely on random numbers to slow down or even freeze. This is especially problematic for cryptographic protocols that require a continuous stream of random numbers, such as SSL/TLS and SSH.

To avoid this issue, some systems use a hardware random number generator (RNG) to generate high-quality entropy. A hardware RNG generates random numbers by measuring physical phenomena, such as thermal noise or radioactive decay. These sources of randomness are considered to be more reliable and unpredictable than software-based sources.

One such hardware RNG is the Trusted Platform Module (TPM), which is a dedicated hardware chip that is used for cryptographic operations and secure boot. The TPM contains a built-in hardware RNG that generates high-quality entropy, which can be used to seed the pool of entropy in the operating system.

Alternatively, software-based solutions such as Haveged can be used to generate additional entropy by exploiting sources of randomness in the system, such as CPU utilization and network traffic. These solutions can help to mitigate the risk of entropy depletion, but they may not be as reliable as hardware-based solutions.

In summary, entropy is a crucial component of cryptography, and a reliable source of high-quality entropy is essential for secure communication and encryption. Systems with high entropy demands should ideally use a hardware RNG such as TPM, while software-based solutions can be used as a fallback option.

How does the Linux kernel replenish entropy?

The Linux kernel replenishes the entropy pool by collecting random events from various sources and adding them to the pool. The kernel uses a combination of hardware and software sources to generate entropy, including:

  • Hardware interrupts from devices such as the keyboard, mouse, and disk controller

  • Thermal noise and other physical phenomena measured by the hardware random number generator (RNG)

  • Network traffic and other software events that produce unpredictable data.

The kernel also includes a number of entropy-gathering algorithms that are used to process the raw data collected from these sources and produce a pool of random numbers that can be used by applications. These algorithms include SHA-1 and SHA-2 hashing, as well as the Yarrow and Fortuna PRNGs (Pseudo Random Number Generators).

Which applications usually use entropy?

There are many applications that rely on entropy to generate random numbers, keys, or other cryptographic elements.

Cryptographic protocols

Cryptographic protocols, such as SSL/TLS, SSH, and IPsec rely heavily on entropy to generate random numbers and keys for encryption, authentication, and integrity protection.

The randomness of these numbers is crucial for the security of the communication. If an attacker can predict the random numbers used in a cryptographic protocol, they can potentially compromise the confidentiality, integrity, or authenticity of the communication.

For example, in SSL/TLS, the server generates a random number called the “pre-master secret” and sends it to the client encrypted with the public key of the server’s certificate. The client then decrypts the pre-master secret with its own private key and uses it to generate the “master secret,” which is used to derive the session keys for encryption and authentication.

If the pre-master secret is predictable or biased, an attacker can potentially intercept the encrypted message, decrypt it, and gain access to the session keys. This would allow the attacker to eavesdrop on the communication, modify the data, or impersonate the server.

To prevent this type of attack, SSL/TLS requires a sufficient amount of high-quality entropy to generate the pre-master secret. The server generates the pre-master secret by combining random data from various sources, such as hardware interrupts, keyboard presses, and mouse movements. This ensures that the pre-master secret is unpredictable and random.

Similarly, in SSH, the client and server generate random numbers to establish a shared secret key for encryption and authentication. If the random numbers are predictable or biased, an attacker can potentially intercept the communication and compromise its security.

To prevent this type of attack, SSH requires a sufficient amount of high-quality entropy to generate the random numbers. The client and server generate the random numbers by combining random data from various sources, such as hardware interrupts, keyboard presses, and mouse movements. This ensures that the random numbers are unpredictable and random.

Database servers

Database servers can use entropy in various ways, depending on the specific database system and its configuration. Here are some examples:

  • Encryption: Many database systems support encryption of data-at-rest or data-in-transit, which relies on random numbers for generating encryption keys, initialization vectors, and other cryptographic elements. For example, Microsoft SQL Server provides Transparent Data Encryption (TDE), which encrypts the data stored on disk, and uses a random number generator to create the encryption key.

  • Random sampling: Some database systems use random sampling as a way of generating statistically significant results, such as in the case of database queries or data analytics. For example, Oracle Database provides the DBMS_RANDOM package, which includes functions for generating random numbers based on the entropy pool of the operating system.

  • Indexing: Some database systems use random numbers as a way of generating unique keys or IDs for indexing purposes. For example, MongoDB uses a 12-byte ObjectID that includes a random value, a timestamp, and other information as a unique identifier for each document.

  • Unique values: Some database systems use random numbers as a way of generating unique values for primary keys or other constraints. For example, PostgreSQL provides the uuid-ossp extension, which includes functions for generating UUIDs using random numbers as a source of entropy.

In summary, the use of entropy in database systems varies depending on the specific use case and implementation.

Kubernetes

Kubernetes can use entropy in various ways, depending on the specific use case and configuration. Here are some examples:

  • Encryption: Kubernetes can encrypt sensitive data, such as secrets and configuration files, using encryption keys that rely on random numbers as a source of entropy. By default, Kubernetes uses AES-256 encryption for data at rest and TLS encryption for data in transit.

  • Random number generation: Kubernetes can generate random numbers for various purposes, such as generating unique IDs for resources or generating tokens for authentication and authorization. For example, Kubernetes uses random numbers to generate session tokens for user authentication in its dashboard.

  • Load balancing: Kubernetes can use random numbers as part of its load balancing algorithms, such as when distributing traffic across multiple replicas of a service.

  • Scaling: Kubernetes can use random numbers as part of its scaling algorithms, such as when selecting nodes for scaling or selecting replicas for scaling.

In general, Kubernetes relies on a sufficient amount of high-quality entropy to ensure the security and reliability of its operations, especially for encryption and authentication.

Entropy in Cloud VMs

Cloud-provided VMs typically have access to hardware-generated entropy, but the specific implementation depends on the cloud provider and the underlying infrastructure.

Most cloud providers recognize the importance of hardware-generated entropy for their customers’ cryptographic operations and security needs. They often utilize hardware random number generators (HRNGs) or hardware security modules (HSMs) in their infrastructure to provide a reliable source of entropy.

In general, cloud providers expose this entropy to VMs through virtual devices or interfaces. This allows VMs to access the hardware-generated entropy as if it were a local resource.

  • AWS (Amazon Web Services): AWS uses its Nitro System, which includes a dedicated hardware random number generator (HRNG), to provide hardware-generated entropy to the VMs (EC2 instances). In Linux-based EC2 instances, the HRNG is exposed through the /dev/hwrng device file. The guest OS can then use this source of entropy to seed its own random number generator.

  • GCP (Google Cloud Platform): GCP offers access to hardware-generated entropy through a service called Virtio RNG (Random Number Generator). This service is enabled by default for Linux-based VMs running on the platform. The guest OS can access the hardware-generated entropy through the /dev/hwrng device file, similar to AWS.

  • Azure (Microsoft Azure): Azure also provides hardware-generated entropy to its VMs. For Linux-based VMs, Azure exposes the hardware-generated entropy through the /dev/hwrng device file. In the case of Windows-based VMs, Azure provides the hardware-generated entropy through the Cryptographic API (CryptoAPI) and Cryptography API: Next Generation (CNG).

Entropy in KVM VMs

When a KVM-based virtual machine (VM) is created on a host with a hardware entropy generator, the VM can potentially inherit the host’s entropy pool, depending on how the VM is configured.

By default, KVM virtual machines use a software-based random number generator, which may not provide the same level of security as a hardware-based RNG. However, it’s possible to configure KVM to use a hardware-based RNG for the virtual machine.

One way to configure KVM to use a hardware-based RNG is to use the virtio-rng device, which allows the virtual machine to access a random number generator on the host system. The virtio-rng device provides access to the host’s entropy pool, which can improve the quality and unpredictability of the random numbers generated by the virtual machine.

To use the virtio-rng device in a KVM virtual machine, you need to add the device to the VM’s configuration file and configure the guest operating system to use it. Once the device is configured, the virtual machine can use the host’s entropy pool to generate random numbers.

However, it’s important to note that not all virtual machine configurations will allow the guest to inherit the host’s entropy pool. In some cases, the virtual machine may have its own independent entropy pool, which may be generated using a software-based RNG. In other cases, the virtual machine may not have access to a random number generator at all.

Entropy in Containers

Containers share the hardware-provided entropy of the host they run on. Containers are essentially lightweight, isolated environments running on a single host operating system. They share the kernel and other resources, including the host’s entropy pool.

How to monitor Entropy with Netdata

Netdata provides a built-in chart for monitoring the available entropy on a Linux system. The chart is named system.entropy and displays the current level of available entropy.

To view the system.entropy chart in Netdata, follow these steps:

  1. Navigate to the Netdata dashboard for the system you want to monitor.
  2. In the right sidebar, click on the System Overview section.
  3. Scroll down to the Entropy section and click it.
  4. The Available Entropy (system.entropy) chart displays the current level of available entropy, along with a history of the entropy level over time. The chart is updated in real-time, allowing you to monitor changes in the available entropy level as they occur.

entropy

Netdata automatically attaches an alert on this chart that monitors the minimum available entropy over the last 5 minutes and triggers a warning when it gets below 100 entries. The alert is smart enough to stay in the warning state until the minimum available entropy of the last 5 minutes gets above 200 entries and has a hysteresis on recovery of 1 to 2 hours to avoid frequent flip-flop when the entropy is close to these limits.