The only agent that thinks for itself

Autonomous Monitoring with self-learning AI built-in, operating independently across your entire stack.

Unlimited Metrics & Logs
Machine learning & MCP
5% CPU, 150MB RAM
3GB disk, >1 year retention
800+ integrations, zero config
Dashboards, alerts out of the box
> Discover Netdata Agents
Centralized metrics streaming and storage

Aggregate metrics from multiple agents into centralized Parent nodes for unified monitoring across your infrastructure.

Stream from unlimited agents
Long-term data retention
High availability clustering
Data replication & backup
Scalable architecture
Enterprise-grade security
> Learn about Parents
Fully managed cloud platform

Access your monitoring data from anywhere with our SaaS platform. No infrastructure to manage, automatic updates, and global availability.

Zero infrastructure management
99.9% uptime SLA
Global data centers
Automatic updates & patches
Enterprise SSO & RBAC
SOC2 & ISO certified
> Explore Netdata Cloud
Deploy Netdata Cloud in your infrastructure

Run the full Netdata Cloud platform on-premises for complete data sovereignty and compliance with your security policies.

Complete data sovereignty
Air-gapped deployment
Custom compliance controls
Private network integration
Dedicated support team
Kubernetes & Docker support
> Learn about Cloud On-Premises
Powerful, intuitive monitoring interface

Modern, responsive UI built for real-time troubleshooting with customizable dashboards and advanced visualization capabilities.

Real-time chart updates
Customizable dashboards
Dark & light themes
Advanced filtering & search
Responsive on all devices
Collaboration features
> Explore Netdata UI
Monitor on the go

Native iOS and Android apps bring full monitoring capabilities to your mobile device with real-time alerts and notifications.

iOS & Android apps
Push notifications
Touch-optimized interface
Offline data access
Biometric authentication
Widget support
> Download apps

Best energy efficiency

True real-time per-second

100% automated zero config

Centralized observability

Multi-year retention

High availability built-in

Zero maintenance

Always up-to-date

Enterprise security

Complete data control

Air-gap ready

Compliance certified

Millisecond responsiveness

Infinite zoom & pan

Works on any device

Native performance

Instant alerts

Monitor anywhere

80% Faster Incident Resolution
AI-powered troubleshooting from detection, to root cause and blast radius identification, to reporting.
True Real-Time and Simple, even at Scale
Linearly and infinitely scalable full-stack observability, that can be deployed even mid-crisis.
90% Cost Reduction, Full Fidelity
Instead of centralizing the data, Netdata distributes the code, eliminating pipelines and complexity.
Control Without Surrender
SOC 2 Type 2 certified with every metric kept on your infrastructure.
Integrations

800+ collectors and notification channels, auto-discovered and ready out of the box.

800+ data collectors
Auto-discovery & zero config
Cloud, infra, app protocols
Notifications out of the box
> Explore integrations
Real Results
46% Cost Reduction

Reduced monitoring costs by 46% while cutting staff overhead by 67%.

— Leonardo Antunez, Codyas

Zero Pipeline

No data shipping. No central storage costs. Query at the edge.

From Our Users
"Out-of-the-Box"

So many out-of-the-box features! I mostly don't have to develop anything.

— Simon Beginn, LANCOM Systems

No Query Language

Point-and-click troubleshooting. No PromQL, no LogQL, no learning curve.

Enterprise Ready
67% Less Staff, 46% Cost Cut

Enterprise efficiency without enterprise complexity—real ROI from day one.

— Leonardo Antunez, Codyas

SOC 2 Type 2 Certified

Zero data egress. Only metadata reaches the cloud. Your metrics stay on your infrastructure.

Full Coverage
800+ Collectors

Auto-discovered and configured. No manual setup required.

Any Notification Channel

Slack, PagerDuty, Teams, email, webhooks—all built-in.

Built for the People Who Get Paged
Because 3am alerts deserve instant answers, not hour-long hunts.
Every Industry Has Rules. We Master Them.
See how healthcare, finance, and government teams cut monitoring costs 90% while staying audit-ready.
Monitor Any Technology. Configure Nothing.
Install the agent. It already knows your stack.
From Our Users
"A Rare Unicorn"

Netdata gives more than you invest in it. A rare unicorn that obeys the Pareto rule.

— Eduard Porquet Mateu, TMB Barcelona

99% Downtime Reduction

Reduced website downtime by 99% and cloud bill by 30% using Netdata alerts.

— Falkland Islands Government

Real Savings
30% Cloud Cost Reduction

Optimized resource allocation based on Netdata alerts cut cloud spending by 30%.

— Falkland Islands Government

46% Cost Cut

Reduced monitoring staff by 67% while cutting operational costs by 46%.

— Codyas

Real Coverage
"Plugin for Everything"

Netdata has agent capacity or a plugin for everything, including Windows and Kubernetes.

— Eduard Porquet Mateu, TMB Barcelona

"Out-of-the-Box"

So many out-of-the-box features! I mostly don't have to develop anything.

— Simon Beginn, LANCOM Systems

Real Speed
Troubleshooting in 30 Seconds

From 2-3 minutes to 30 seconds—instant visibility into any node issue.

— Matthew Artist, Nodecraft

20% Downtime Reduction

20% less downtime and 40% budget optimization from out-of-the-box monitoring.

— Simon Beginn, LANCOM Systems

Pay per Node. Unlimited Everything Else.

One price per node. Unlimited metrics, logs, users, and retention. No per-GB surprises.

Free tier—forever
No metric limits or caps
Retention you control
Cancel anytime
> See pricing plans
What's Your Monitoring Really Costing You?

Most teams overpay by 40-60%. Let's find out why.

Expose hidden metric charges
Calculate tool consolidation
Customers report 30-67% savings
Results in under 60 seconds
> See what you're really paying
Your Infrastructure Is Unique. Let's Talk.

Because monitoring 10 nodes is different from monitoring 10,000.

On-prem & air-gapped deployment
Volume pricing & agreements
Architecture review for your scale
Compliance & security support
> Start a conversation
Monitoring That Sells Itself

Deploy in minutes. Impress clients in hours. Earn recurring revenue for years.

30-second live demos close deals
Zero config = zero support burden
Competitive margins & deal protection
Response in 48 hours
> Apply to partner
Per-Second Metrics at Homelab Prices

Same engine, same dashboards, same ML. Just priced for tinkerers.

Community: Free forever · 5 nodes · non-commercial
Homelab: $90/yr · unlimited nodes · fair usage
> Start monitoring your lab—free
$1,000 Per Referral. Unlimited Referrals.

Your colleagues get 10% off. You get 10% commission. Everyone wins.

10% of subscriptions, up to $1,000 each
Track earnings inside Netdata Cloud
PayPal/Venmo payouts in 3-4 weeks
No caps, no complexity
> Get your referral link
Cost Proof
40% Budget Optimization

"Netdata's significant positive impact" — LANCOM Systems

Calculate Your Savings

Compare vs Datadog, Grafana, Dynatrace

Savings Proof
46% Cost Reduction

"Cut costs by 46%, staff by 67%" — Codyas

30% Cloud Bill Savings

"Reduced cloud bill by 30%" — Falkland Islands Gov

Enterprise Proof
"Better Than Combined Alternatives"

"Better observability with Netdata than combining other tools." — TMB Barcelona

Real Engineers, <24h Response

DPA, SLAs, on-prem, volume pricing

Why Partners Win
Demo Live Infrastructure

One command, 30 seconds, real data—no sandbox needed

Zero Tickets, High Margins

Auto-config + per-node pricing = predictable profit

Homelab Ready
"Absolutely Incredible"

"We tested every monitoring system under the sun." — Benjamin Gabler, CEO Rocket.Net

76k+ GitHub Stars

3rd most starred monitoring project

Worth Recommending
Product That Delivers

Customers report 40-67% cost cuts, 99% downtime reduction

Zero Risk to Your Rep

Free tier lets them try before they buy

Never Fight Fires Alone

Docs, community, and expert help—pick your path to resolution.

Learn.netdata.cloud docs
Discord, Forums, GitHub
Premium support available
> Get answers now
60 Seconds to First Dashboard

One command to install. Zero config. 850+ integrations documented.

Linux, Windows, K8s, Docker
Auto-discovers your stack
> Read our documentation
See Netdata in Action

Watch real-time monitoring in action—demos, tutorials, and engineering deep dives.

Product demos and walkthroughs
Real infrastructure, not staged
> Start with the 3-minute tour
Level Up Your Monitoring
Real problems. Real solutions. 112+ guides from basic monitoring to AI observability.
76,000+ Engineers Strong
615+ contributors. 1.5M daily downloads. One mission: simplify observability.
Per-Second. 90% Cheaper. Data Stays Home.
Side-by-side comparisons: costs, real-time granularity, and data sovereignty for every major tool.

See why teams switch from Datadog, Prometheus, Grafana, and more.

> Browse all comparisons
Edge-Native Observability, Born Open Source
Per-second visibility, ML on every metric, and data that never leaves your infrastructure.
Founded in 2016
615+ contributors worldwide
Remote-first, engineering-driven
Open source first
> Read our story
Promises We Publish—and Prove
12 principles backed by open code, independent validation, and measurable outcomes.
Open source, peer-reviewed
Zero config, instant value
Data sovereignty by design
Aligned pricing, no surprises
> See all 12 principles
Edge-Native, AI-Ready, 100% Open
76k+ stars. Full ML, AI, and automation—GPLv3+, not premium add-ons.
76,000+ GitHub stars
GPLv3+ licensed forever
ML on every metric, included
Zero vendor lock-in
> Explore our open source
Build Real-Time Observability for the World
Remote-first team shipping per-second monitoring with ML on every metric.
Remote-first, fully distributed
Open source (76k+ stars)
Challenging technical problems
Your code on millions of systems
> See open roles
Talk to a Netdata Human in <24 Hours
Sales, partnerships, press, or professional services—real engineers, fast answers.
Discuss your observability needs
Pricing and volume discounts
Partnership opportunities
Media and press inquiries
> Book a conversation
Your Data. Your Rules.
On-prem data, cloud control plane, transparent terms.
Trust & Scale
76,000+ GitHub Stars

One of the most popular open-source monitoring projects

SOC 2 Type 2 Certified

Enterprise-grade security and compliance

Data Sovereignty

Your metrics stay on your infrastructure

Validated
University of Amsterdam

"Most energy-efficient monitoring solution" — ICSOC 2023, peer-reviewed

ADASTEC (Autonomous Driving)

"Doesn't miss alerts—mission-critical trust for safety software"

Community Stats
615+ Contributors

Global community improving monitoring for everyone

1.5M+ Downloads/Day

Trusted by teams worldwide

GPLv3+ Licensed

Free forever, fully open source agent

Why Join?
Remote-First

Work from anywhere, async-friendly culture

Impact at Scale

Your work helps millions of systems

Compliance
SOC 2 Type 2

Audited security controls

GDPR Ready

Data stays on your infrastructure

Blog

Understanding Interrupts, Softirqs, and Softnet in Linux

Mastering System Responses for Improved Performance
by Satyadeep Ashwathnarayana · May 2, 2023

stacked-netdata

Interrupts, softirqs, and softnet are all critical parts of the Linux kernel that can impact system performance. In this blog post, we’ll explore their usefulness, and discuss how to monitor them using Netdata for both bare-metal servers and VMs.

What are Interrupts?

Interrupts are signals generated by hardware devices to indicate that they require attention from the CPU. Hardware devices can generate interrupts for a variety of reasons, including data transmission or reception, input/output operations, and other activities. When an interrupt is generated, the CPU stops what it is doing and handles the interrupt. Interrupts can have a significant impact on system performance, especially if there are a high number of interrupts occurring.

Although most interrupts are associated with specific devices, there are a few interrupts that are available on most systems:

  • LOC (Local Timer Interrupt): This interrupt is generated by the local timer on each CPU core. The local timer is used by the kernel for scheduling purposes and to track time elapsed since system boot.

  • IWI (Wireless Interrupt): This interrupt is generated by wireless network interface cards (NICs) when they receive or transmit data.

  • RES (Rescheduling Interrupt): This interrupt is generated by the kernel when it needs to reschedule a process or thread to run on a different CPU core.

  • CAL (Function Call Interrupt): This interrupt is generated by the kernel when it needs to call a specific function or service.

  • TLB (Translation Lookaside Buffer Interrupt): This interrupt is generated by the CPU when it needs to perform a translation lookup for virtual memory addresses.

  • MCP (Machine Check Exception): This interrupt is generated by the CPU or other hardware devices when they detect a hardware error or fault.

Interrupts on Cloud VMs

In cloud environments, virtual machines (VMs) are typically running on a physical host system that is managed by the cloud provider. When a hardware device generates an interrupt, it is sent to the physical host system. The host system then forwards the interrupt to the appropriate virtual machine. The virtual machine then handles the interrupt as if it were running on physical hardware.

So, when you are monitoring interrupts in a virtual machine, you are actually monitoring the hardware interrupts that are generated by the physical host system and forwarded to the virtual machine. This means that the number of interrupts you see in the virtual machine may be lower than the actual number of interrupts generated by the hardware, since some interrupts may be handled by the host system before they are forwarded to the virtual machine.

However, the way interrupts are handled in virtual machines can be different than in physical machines, since the virtualization layer can introduce additional overhead and complexity. Additionally, the way that hardware devices are emulated or passed through to virtual machines can impact interrupt handling and performance.

It’s also worth noting that some cloud providers may limit the number of interrupts that are forwarded to virtual machines, in order to prevent noisy neighbors from impacting the performance of other VMs running on the same host system. This can impact the accuracy of interrupt monitoring in virtual machines.

What are Softirqs?

Softirqs (software interrupt requests) are similar to interrupts, but they are generated by the kernel itself rather than hardware devices. Softirqs are used for a variety of purposes, such as network processing, task scheduling, and disk I/O. Softirqs are generally less time-critical than hardware interrupts, but they can still impact system performance.

Here is a list of the possible softirqs:

  • TIMER: This softirq is used for timer management, such as scheduling periodic tasks or triggering events after a certain amount of time has elapsed.

  • NET_TX: This softirq is used for network packet transmission, such as sending data over a network interface card.

  • NET_RX: This softirq is used for network packet reception, such as processing incoming data from a network interface card.

  • TASKLET: This softirq is used for task scheduling, such as scheduling work to be done in response to an event or interrupt.

  • SCHED: This softirq is used for task scheduling as well, but it is used for higher-priority scheduling activities.

  • HRTIMER: This softirq is used for high-resolution timer management, such as scheduling tasks with precise timing requirements.

  • RCU (Read-Copy Update): This softirq is used for synchronization between multiple threads or processes that access shared data. It ensures that shared data is not modified by one thread while another thread is reading it.

  • BLOCK: This softirq is used for block device I/O operations, such as reading from or writing to a hard disk.

  • IRQ_POLL: This softirq is used to poll hardware devices for new data, rather than waiting for an interrupt.

  • IRQ_THREADED: This softirq is used for threaded interrupt handling, which allows interrupt handling to be offloaded to a separate thread rather than being handled directly by the kernel.

  • SCHEDSTAT: This softirq is used for collecting scheduling statistics, such as the number of processes in each scheduling class.

  • SLOWPATH: This softirq is used for slow-path packet processing, such as handling packets that require additional processing or validation.

What is Softnet?

Softnet is a specific type of softirq that is used for network processing. Softnet is responsible for handling incoming network packets and routing them to the appropriate processes or applications. Like other softirqs, softnet can impact system performance, especially if there is a high volume of network traffic.

These are the dimensions provided by Netdata:

  • Processed: This dimension shows the number of packets that were successfully processed by the softnet code. When a packet is received by the network interface, it is passed to the softnet code for processing. The softnet code performs a variety of tasks, such as protocol decoding, packet filtering, and routing. The number of packets processed can indicate how much traffic your network is handling and whether your system is keeping up with the workload.

  • Dropped: This dimension shows the number of packets that were dropped because the network device backlog was full. When the network interface receives a large volume of packets, it may not be able to keep up with the workload. In this case, the backlog can become full, and packets may be dropped to prevent the backlog from overflowing. If you are seeing a high number of dropped packets, it may indicate that your network interface is overwhelmed and needs to be optimized.

  • Squeezed: This dimension shows the number of times the network device budget was consumed or the time limit was reached, but more work was available. The network device budget is a resource that is allocated to the softnet code to process incoming packets. When the budget is consumed or the time limit is reached, the softnet code may not be able to process all of the available packets. In this case, the softnet code will “squeeze” the remaining packets into the next budget or time slice. If you are seeing a high number of squeezed packets, it may indicate that your network interface is not keeping up with the workload and needs to be optimized.

  • ReceivedRPS: This dimension shows the number of times this CPU has been woken up to process packets via an Inter-processor Interrupt (IPI). When a packet is received by the network interface, it may be handled by a different CPU than the one that is running the softnet code. In this case, an IPI is used to wake up the CPU that is running the softnet code to process the packet. If you are seeing a high number of received RPS events, it may indicate that the softnet processing is being spread across multiple CPUs, which can improve performance.

  • FlowLimitCount: This dimension shows the number of times the flow limit has been reached (flow limiting is an optional Receive Packet Steering feature). Flow limiting is a mechanism that is used to distribute incoming packets across multiple CPUs in a balanced manner. When the flow limit is reached, the softnet code may not be able to distribute packets evenly across all CPUs. If you are seeing a high number of flow limit events, it may indicate that the softnet code is not able to distribute packets evenly across all CPUs, which can impact performance.

Why Monitor Interrupts, Softirqs, and Softnet?

Monitoring interrupts, softirqs, and softnet can help you identify performance issues and troubleshoot problems in cloud VMs. By monitoring these metrics, you can identify potential issues related to hardware devices, software performance, and network traffic. This can help you take proactive steps to optimize system performance and avoid issues that could impact your VMs.

How to Monitor Interrupts, Softirqs, and Softnet with Netdata?

Netdata is a powerful real-time performance monitoring tool that can provide insights into system performance, including interrupts, softirqs, and softnet. Netdata can collect and display metrics on a wide variety of system resources, including CPU usage, memory usage, network traffic, and disk I/O, and many more.

To monitor interrupts, softirqs, and softnet in Netdata for cloud VMs, you can navigate to the System Overview dashboard and look for the relevant charts. These charts can show you the current values for these metrics, as well as historical trends over time.

By monitoring interrupts, softirqs, and softnet per core at the CPUs section, you can identify which CPU cores are experiencing the highest levels of activity. image