The only agent that thinks for itself

Autonomous Monitoring with self-learning AI built-in, operating independently across your entire stack.

Unlimited Metrics & Logs
Machine learning & MCP
5% CPU, 150MB RAM
3GB disk, >1 year retention
800+ integrations, zero config
Dashboards, alerts out of the box
> Discover Netdata Agents
Centralized metrics streaming and storage

Aggregate metrics from multiple agents into centralized Parent nodes for unified monitoring across your infrastructure.

Stream from unlimited agents
Long-term data retention
High availability clustering
Data replication & backup
Scalable architecture
Enterprise-grade security
> Learn about Parents
Fully managed cloud platform

Access your monitoring data from anywhere with our SaaS platform. No infrastructure to manage, automatic updates, and global availability.

Zero infrastructure management
99.9% uptime SLA
Global data centers
Automatic updates & patches
Enterprise SSO & RBAC
SOC2 & ISO certified
> Explore Netdata Cloud
Deploy Netdata Cloud in your infrastructure

Run the full Netdata Cloud platform on-premises for complete data sovereignty and compliance with your security policies.

Complete data sovereignty
Air-gapped deployment
Custom compliance controls
Private network integration
Dedicated support team
Kubernetes & Docker support
> Learn about Cloud On-Premises
Powerful, intuitive monitoring interface

Modern, responsive UI built for real-time troubleshooting with customizable dashboards and advanced visualization capabilities.

Real-time chart updates
Customizable dashboards
Dark & light themes
Advanced filtering & search
Responsive on all devices
Collaboration features
> Explore Netdata UI
Monitor on the go

Native iOS and Android apps bring full monitoring capabilities to your mobile device with real-time alerts and notifications.

iOS & Android apps
Push notifications
Touch-optimized interface
Offline data access
Biometric authentication
Widget support
> Download apps

Best energy efficiency

True real-time per-second

100% automated zero config

Centralized observability

Multi-year retention

High availability built-in

Zero maintenance

Always up-to-date

Enterprise security

Complete data control

Air-gap ready

Compliance certified

Millisecond responsiveness

Infinite zoom & pan

Works on any device

Native performance

Instant alerts

Monitor anywhere

80% Faster Incident Resolution
AI-powered troubleshooting from detection, to root cause and blast radius identification, to reporting.
True Real-Time and Simple, even at Scale
Linearly and infinitely scalable full-stack observability, that can be deployed even mid-crisis.
90% Cost Reduction, Full Fidelity
Instead of centralizing the data, Netdata distributes the code, eliminating pipelines and complexity.
Control Without Surrender
SOC 2 Type 2 certified with every metric kept on your infrastructure.
Integrations

800+ collectors and notification channels, auto-discovered and ready out of the box.

800+ data collectors
Auto-discovery & zero config
Cloud, infra, app protocols
Notifications out of the box
> Explore integrations
Real Results
46% Cost Reduction

Reduced monitoring costs by 46% while cutting staff overhead by 67%.

— Leonardo Antunez, Codyas

Zero Pipeline

No data shipping. No central storage costs. Query at the edge.

From Our Users
"Out-of-the-Box"

So many out-of-the-box features! I mostly don't have to develop anything.

— Simon Beginn, LANCOM Systems

No Query Language

Point-and-click troubleshooting. No PromQL, no LogQL, no learning curve.

Enterprise Ready
67% Less Staff, 46% Cost Cut

Enterprise efficiency without enterprise complexity—real ROI from day one.

— Leonardo Antunez, Codyas

SOC 2 Type 2 Certified

Zero data egress. Only metadata reaches the cloud. Your metrics stay on your infrastructure.

Full Coverage
800+ Collectors

Auto-discovered and configured. No manual setup required.

Any Notification Channel

Slack, PagerDuty, Teams, email, webhooks—all built-in.

Built for the People Who Get Paged
Because 3am alerts deserve instant answers, not hour-long hunts.
Every Industry Has Rules. We Master Them.
See how healthcare, finance, and government teams cut monitoring costs 90% while staying audit-ready.
Monitor Any Technology. Configure Nothing.
Install the agent. It already knows your stack.
From Our Users
"A Rare Unicorn"

Netdata gives more than you invest in it. A rare unicorn that obeys the Pareto rule.

— Eduard Porquet Mateu, TMB Barcelona

99% Downtime Reduction

Reduced website downtime by 99% and cloud bill by 30% using Netdata alerts.

— Falkland Islands Government

Real Savings
30% Cloud Cost Reduction

Optimized resource allocation based on Netdata alerts cut cloud spending by 30%.

— Falkland Islands Government

46% Cost Cut

Reduced monitoring staff by 67% while cutting operational costs by 46%.

— Codyas

Real Coverage
"Plugin for Everything"

Netdata has agent capacity or a plugin for everything, including Windows and Kubernetes.

— Eduard Porquet Mateu, TMB Barcelona

"Out-of-the-Box"

So many out-of-the-box features! I mostly don't have to develop anything.

— Simon Beginn, LANCOM Systems

Real Speed
Troubleshooting in 30 Seconds

From 2-3 minutes to 30 seconds—instant visibility into any node issue.

— Matthew Artist, Nodecraft

20% Downtime Reduction

20% less downtime and 40% budget optimization from out-of-the-box monitoring.

— Simon Beginn, LANCOM Systems

Pay per Node. Unlimited Everything Else.

One price per node. Unlimited metrics, logs, users, and retention. No per-GB surprises.

Free tier—forever
No metric limits or caps
Retention you control
Cancel anytime
> See pricing plans
What's Your Monitoring Really Costing You?

Most teams overpay by 40-60%. Let's find out why.

Expose hidden metric charges
Calculate tool consolidation
Customers report 30-67% savings
Results in under 60 seconds
> See what you're really paying
Your Infrastructure Is Unique. Let's Talk.

Because monitoring 10 nodes is different from monitoring 10,000.

On-prem & air-gapped deployment
Volume pricing & agreements
Architecture review for your scale
Compliance & security support
> Start a conversation
Monitoring That Sells Itself

Deploy in minutes. Impress clients in hours. Earn recurring revenue for years.

30-second live demos close deals
Zero config = zero support burden
Competitive margins & deal protection
Response in 48 hours
> Apply to partner
Per-Second Metrics at Homelab Prices

Same engine, same dashboards, same ML. Just priced for tinkerers.

Community: Free forever · 5 nodes · non-commercial
Homelab: $90/yr · unlimited nodes · fair usage
> Start monitoring your lab—free
$1,000 Per Referral. Unlimited Referrals.

Your colleagues get 10% off. You get 10% commission. Everyone wins.

10% of subscriptions, up to $1,000 each
Track earnings inside Netdata Cloud
PayPal/Venmo payouts in 3-4 weeks
No caps, no complexity
> Get your referral link
Cost Proof
40% Budget Optimization

"Netdata's significant positive impact" — LANCOM Systems

Calculate Your Savings

Compare vs Datadog, Grafana, Dynatrace

Savings Proof
46% Cost Reduction

"Cut costs by 46%, staff by 67%" — Codyas

30% Cloud Bill Savings

"Reduced cloud bill by 30%" — Falkland Islands Gov

Enterprise Proof
"Better Than Combined Alternatives"

"Better observability with Netdata than combining other tools." — TMB Barcelona

Real Engineers, <24h Response

DPA, SLAs, on-prem, volume pricing

Why Partners Win
Demo Live Infrastructure

One command, 30 seconds, real data—no sandbox needed

Zero Tickets, High Margins

Auto-config + per-node pricing = predictable profit

Homelab Ready
"Absolutely Incredible"

"We tested every monitoring system under the sun." — Benjamin Gabler, CEO Rocket.Net

76k+ GitHub Stars

3rd most starred monitoring project

Worth Recommending
Product That Delivers

Customers report 40-67% cost cuts, 99% downtime reduction

Zero Risk to Your Rep

Free tier lets them try before they buy

Never Fight Fires Alone

Docs, community, and expert help—pick your path to resolution.

Learn.netdata.cloud docs
Discord, Forums, GitHub
Premium support available
> Get answers now
60 Seconds to First Dashboard

One command to install. Zero config. 850+ integrations documented.

Linux, Windows, K8s, Docker
Auto-discovers your stack
> Read our documentation
See Netdata in Action

Watch real-time monitoring in action—demos, tutorials, and engineering deep dives.

Product demos and walkthroughs
Real infrastructure, not staged
> Start with the 3-minute tour
Level Up Your Monitoring
Real problems. Real solutions. 112+ guides from basic monitoring to AI observability.
76,000+ Engineers Strong
615+ contributors. 1.5M daily downloads. One mission: simplify observability.
Per-Second. 90% Cheaper. Data Stays Home.
Side-by-side comparisons: costs, real-time granularity, and data sovereignty for every major tool.

See why teams switch from Datadog, Prometheus, Grafana, and more.

> Browse all comparisons
Edge-Native Observability, Born Open Source
Per-second visibility, ML on every metric, and data that never leaves your infrastructure.
Founded in 2016
615+ contributors worldwide
Remote-first, engineering-driven
Open source first
> Read our story
Promises We Publish—and Prove
12 principles backed by open code, independent validation, and measurable outcomes.
Open source, peer-reviewed
Zero config, instant value
Data sovereignty by design
Aligned pricing, no surprises
> See all 12 principles
Edge-Native, AI-Ready, 100% Open
76k+ stars. Full ML, AI, and automation—GPLv3+, not premium add-ons.
76,000+ GitHub stars
GPLv3+ licensed forever
ML on every metric, included
Zero vendor lock-in
> Explore our open source
Build Real-Time Observability for the World
Remote-first team shipping per-second monitoring with ML on every metric.
Remote-first, fully distributed
Open source (76k+ stars)
Challenging technical problems
Your code on millions of systems
> See open roles
Talk to a Netdata Human in <24 Hours
Sales, partnerships, press, or professional services—real engineers, fast answers.
Discuss your observability needs
Pricing and volume discounts
Partnership opportunities
Media and press inquiries
> Book a conversation
Your Data. Your Rules.
On-prem data, cloud control plane, transparent terms.
Trust & Scale
76,000+ GitHub Stars

One of the most popular open-source monitoring projects

SOC 2 Type 2 Certified

Enterprise-grade security and compliance

Data Sovereignty

Your metrics stay on your infrastructure

Validated
University of Amsterdam

"Most energy-efficient monitoring solution" — ICSOC 2023, peer-reviewed

ADASTEC (Autonomous Driving)

"Doesn't miss alerts—mission-critical trust for safety software"

Community Stats
615+ Contributors

Global community improving monitoring for everyone

1.5M+ Downloads/Day

Trusted by teams worldwide

GPLv3+ Licensed

Free forever, fully open source agent

Why Join?
Remote-First

Work from anywhere, async-friendly culture

Impact at Scale

Your work helps millions of systems

Compliance
SOC 2 Type 2

Audited security controls

GDPR Ready

Data stays on your infrastructure

Blog

Netdata is the only real-time monitoring solution: Justified

Unrivaled Real-Time Monitoring for Instant, In-Depth System Insights
by Costa Tsaousis · April 10, 2024

In the digital era, where data flows like a ceaseless river, real-time monitoring stands as a pivotal technology, allowing organizations to not only keep pace but also to deeply understand the intricate dance of their operational ecosystems. This technology is not just about keeping tabs; it’s about gaining a profound, almost intuitive sense of the micro-worlds within which systems, containers, services, and applications pulse and thrive.

Real-time monitoring is the art and science of tracking system performance, activities, or transactions continuously and automatically, providing the ability to analyze and visualize data the moment it’s generated.

Beyond the practicality of immediate response, real-time monitoring offers an unparalleled level of understanding. Stakeholders can ‘feel the pulse and breath’ of their infrastructure, witnessing every heartbeat and fluctuation. This intimate connection with the system’s inner workings fosters a deeper comprehension, enabling users to anticipate issues, optimize operations, and innovate with greater agility.

Concept of Real-Time in Different Contexts

Real-time monitoring is a multifaceted concept that adapts its significance and implementation based on the specific demands and nuances of different industries and applications. Despite this versatility, at its core, real-time monitoring shares a set of fundamental principles that define its essence and operational imperatives.

  • Finance: In the financial sector, real-time monitoring is synonymous with the precision required for trading systems, where delays can result in significant financial loss. Here, real-time means capturing market movements and executing trades with the smallest possible latency.
  • Healthcare: In healthcare, real-time monitoring is crucial for patient care, where it translates to continuous observation of vital signs to provide immediate care or intervention. The definition of real-time in this context emphasizes timely data that can influence life-saving decisions.
  • Manufacturing: For manufacturing, real-time monitoring ensures operational efficiency and safety. It involves tracking production processes, machinery health, and environmental conditions to instantly detect and rectify disruptions or hazards.
  • E-Commerce: In e-commerce, real-time monitoring focuses on user experience, ensuring website performance and transaction processes operate seamlessly to prevent customer drop-off and optimize engagement.
  • Cybersecurity: Real-time in cybersecurity means immediate detection and response to threats, ensuring that breaches are identified and mitigated swiftly to protect data integrity and confidentiality.

Real-time monitoring is not just a technical requirement, but a strategic asset that offers deep insights into the operational health of various systems across industries.

Core Components of Real-Time Monitoring

Real-time monitoring systems consist of several integral components that work in concert to provide timely insights and enable swift action. Understanding these core components is crucial for designing, evaluating, or enhancing real-time monitoring capabilities.

Data Collection

Data collection is the foundational step in real-time monitoring, involving the continuous acquisition of data from various sources, such as sensors, logs, user activities, processes, network connections, etc.

The key characteristics are:

  • Granularity: Data must be collected frequently, to provide high-resolution insights and ensure its relevance. The more frequently data is collected, the more real-time the system is.
  • Cardinality & Scalability: As the volume of data or the number of sources increases, the collection system should maintain its performance without degradation.
  • Reliability: The collection process should be robust, ensuring data integrity and minimizing loss or corruption.
  • Diversity: Collection mechanisms should be versatile, capable of handling various data types and formats from different sources.

Data Processing

Once data is collected, it must be processed rapidly to convert raw data into actionable insights. This includes filtering, aggregation, correlation, and analysis of data in real-time.

The key characteristics are:

  • Latency: Processing must be fast enough to keep up with the incoming data stream and provide timely insights.
  • Efficiency & Scalability: Algorithms and processing mechanisms should be optimized to handle high volumes of data with minimal resource consumption.
  • Accuracy: Data processing should maintain the fidelity of the data, ensuring that insights are based on reliable and precise information.
  • Flexibility: The processing system should be adaptable to various data processing requirements and capable of evolving with changing data patterns.

Data Retention

Data retention in real-time monitoring refers to the system’s capability to store, manage, and retrieve the vast volumes of high-resolution data generated. Efficient data retention is crucial for historical analysis, trend observation, regulatory compliance, and forensic investigations.

The key characteristics are:

  • Efficiency: The system must store data in a manner that optimizes space utilization without compromising data integrity or access speed.
  • Scalability: As data volume grows, the retention system should scale effectively, maintaining performance and ensuring data is neither lost nor degraded.
  • Accessibility: Retained data should be easily accessible for analysis and reporting, with mechanisms in place to query and retrieve data swiftly.
  • High-Resolution Storage: The system should maintain the granularity of data, storing it at a high resolution to enable detailed analysis. This is particularly important for systems where historical data can provide insights into trends, patterns, or anomalies over time.

Data Visualization

Visualization translates processed data into a human-readable format, providing intuitive interfaces for users to understand and interact with the data in real-time.

The key characteristics are:

  • Clarity: Visualizations should convey information clearly and effectively, allowing users to quickly grasp the situation.
  • Interactivity: Users should be able to drill down, filter, or manipulate the visualization to explore the data in detail.
  • Customizability: The visualization component should offer customization options to cater to different user preferences and requirements.
  • Real-time Update: Visual representations should update dynamically, reflecting the most current data without requiring manual refresh.

Together, these components form the backbone of real-time monitoring systems, ensuring that data is not only collected and analyzed promptly but also made accessible and actionable for users, facilitating informed decision-making and timely responses in dynamic environments.

Why is Real-Time Monitoring So Challenging?

Real-time monitoring is a sophisticated technology that operates under the principle of immediacy, aiming to capture, process, and visualize data almost instantaneously. While its benefits are immense, achieving real-time capabilities is fraught with challenges that span technical, operational, and scalability aspects.

The sheer volume of data generated by modern systems is staggering. In real-time monitoring, data must be captured at the very moment it is generated. As the number of data sources grows, so does the influx of data, which can be overwhelming. Processing this data in real-time, ensuring no loss or latency, is a monumental task, requiring robust and efficient systems.

The pipeline that queries data sources, processes the collected data points, stores them, and makes them available for visualization and alerts, has to be designed so that:

  • It is fast enough to keep up the pace samples are coming in, processed, and stored,
  • It is optimized enough to minimize compute resources consumption (CPU, memory, disk I/O, and disk space).

As organizations grow, so do their data and monitoring needs. A real-time monitoring system must be scalable to handle increasing volumes of data without performance degradation. This requires a well-thought-out architecture that can expand horizontally (adding more servers or nodes) and vertically (enhancing the capabilities of existing servers). Achieving this scalability while maintaining real-time performance is a significant challenge, usually involving:

  • Network bandwidth consumption,
  • The cost of compute resources for maintaining an ingestion rate that high,
  • When central monitoring resources cross the maximum ingestion capacity vertical scaling can provide, they must scale horizontally (sharding, partitioning, etc).

In other words, at the point that the infrastructure becomes so big, that there is no single server powerful enough for ingesting all the data, they need to find a way to have multiple servers ingesting data in parallel, while still maintaining a unified view at visualization and alerting.

The trade-off between granularity (how detailed the data is) and cardinality (the number of distinct data series) is a key challenge in real-time monitoring. Higher granularity provides more detailed insights but requires more resources to capture, store, and process. Similarly, high cardinality offers a broader or deeper perspective but exacerbates the data volume challenge.

To say this differently, a system that collects 2000 metrics per second per node, has to do 100 times more work, compared to a system that collects 200 metrics every 10 seconds.

When a distributed architecture is chosen (like in Netdata) to overcome the granularity and cardinality limitations, data is scattered across different locations or environments. Aggregating this data to present a unified, coherent view in real-time is challenging. It requires sophisticated synchronization mechanisms and data integration techniques to ensure that the data presented is consistent and up-to-date.

The complexity of real-time monitoring arises from the need to balance immediacy with accuracy, detail with breadth, and scalability with cost-efficiency. It’s a dynamic field that requires continuous innovation to address the evolving challenges of data-driven environments. Understanding these challenges is crucial for anyone looking to implement or enhance real-time monitoring systems, ensuring they are prepared to navigate the intricate landscape of real-time data analysis.

Comparative Analysis of Real-Time Monitoring Solutions

In the realm of monitoring solutions, real-time capabilities vary significantly. To elucidate this, we compare several prevalent monitoring solutions based on their out-of-the-box real-time monitoring capabilities. The focus is on default settings, as these are indicative of the immediate value each solution provides.

We evaluate:

  • Traditional check-based systems like Nagios, Icinga, Zabbix, Sensu, PRTG, SolarWinds.
  • Popular commercial offerings like Datadog, Dynatrace, NewRelic, Grafana Cloud, Instana.
  • A custom setup of Prometheus and Grafana configured for per-second data collection.
  • Netdata with default settings, as it is out of the box.

Keep in mind that one way or another, many monitoring solutions have the ability for some real-time aspect. However, we are interested in what they do out of the box, by default.

These systems can be classified as follows:

Traditional Check-Based Systems

E.g., Nagios, Icinga, Zabbix, PRTG, Sensu, SolarWinds.

These systems generally operate with per-minute data collection and retention, placing them outside the real-time category.

  1. Traditional check-based systems like Nagios, Icinga, Zabbix, Sensu, PRTG, SolarWinds.

  2. Popular commercial offerings like Datadog, Dynatrace, NewRelic, Grafana Cloud, Instana.

  3. A custom setup of Prometheus and Grafana configured for per-second data collection.

  4. Netdata with default settings, as it is out of the box.

Keep in mind that one way or another, many monitoring solutions have the ability for some real-time aspect. However, we are interested in what they do out of the box, by default.

These systems can be classified as follows:

  • Traditional check-based systems

    • E.g. Nagios, Icinga, Zabbix, PRTG, Sensu, SolarWinds.
    • These systems generally operate with per-minute data collection and retention, placing them outside the real-time category.
  • Popular Commercial Offerings

    • Dynatrace, NewRelic, Grafana Cloud These systems also generally operate with per-minute data collection and retention, placing them outside the real-time category.

    • Datadog

      • Datadog has a data collection frequency of 15-seconds. Not real-time enough, but still a lot better compared to the previous ones.
      • Apart from the low data collection rate, Datadog has the following issues preventing its classification as a real-time monitoring system:
        • It has a variable data processing latency. There are numerous reports online from users stating that sometimes data needs several minutes to appear on the dashboards.
        • In our tests, we observed Datadog dashboards faking data collections. For example, we stopped a container and Datadog dashboards were still presenting new samples for several minutes, while the container was stopped.
        • It has low accuracy. To test this, we paused a few VMs for a couple of minutes and then we resumed them. Datadog did not notice that. It was always presenting a continuous flow of data, despite the fact that it missed several data collections.
    • Instana

      • Instana has per-second data collection, however there are a couple issues that prevent classifying it as real-time:
      • It retains per-second data for only 24-hours. Then it falls back to per-minute. This means that on Monday, you cannot see high-resolution views of Saturday.
      • The integrations available are very limited and only some of the available ones collect data per-second.
      • It is a centralized design, which means it has a hard cap on scalability.
  • Custom Prometheus and Grafana, configured for per-second collection

    • Prometheus allows configuring data collection per-second, so we need to evaluate this combination too.
    • The key issues of this setup are:
      • Low reliability. Prometheus does not work in a beat. The data collection interval can fluctuate, but more importantly missed data collections are not stored in the database. This means that Grafana dashboards can only show gaps based on statistical algorithms.
      • Low scalability. Prometheus is a central time-series database. Of course, there are solutions to improve this, like Thanos, but these solutions increase complexity drastically.
      • Visualization clarity and interactivity is almost non-existing. This lies in the fact that Grafana is mainly a visualization designer / editor. So, Grafana has assumed that users already know what they visualize and there is no need to provide any information to help users grasp the dataset better. There is nothing to help users understand cardinality, filtering is available at dashboard level not chart level and dicing the data requires writing complex and cryptic PromQL queries.
      • Dashboard updates are every 5 seconds at best, or manually. To control query load on the backend servers (Prometheus), Grafana has limited its automatic refresh rate to every 5 seconds.
  • Netdata

    • Netdata emerges as a comprehensive real-time monitoring solution with:
      • Per-second data collection,
      • 1-second data collection to visualization latency, working at a beat,
      • Missed data collection points are stored in the database and are visualized,
      • 0.5 bytes per sample on disk for the high resolution tier,
      • Per second dashboard refreshes,
      • Machine learning based anomaly detection, as a standard, analyzing the patterns and finding anomalies during data collection,
      • Decentralized architecture for building high performance pipelines of vast capacity,
      • Full transparency and clarity at visualization level, on all facets of a dataset, to help users quickly understand the data sources and their contribution to each chart.
    • The resources Netdata requires for all these, are less than what most other monitoring systems require, making Netdata one of the most lightweight monitoring solutions.

This is the full comparison:

Check-based systemsPopular Commercial OfferingsCustom Prometheus (per-sec) + GrafanaNetdata

Systems

Nagios, Icigna, Zabbix, Sensu, SolarWinds, PRTGDynatrace, NewRelic, Grafana CloudDatadogInstanaPrometheus + GrafanaNetdata

Data Collection

Granularity

1-minute1-minute15-seconds1-second1-second1-second

Cardinality

Very LowLowAverageVery LowHigh (a lot of integrations but a lot of moving parts too)Excellent (a lot of integrations, one moving part, all out of the box)

Reliability

HighLow (absence of samples is not indicated)Low (absence of samples is not indicated)Excellent (stores gaps too)Low (absence of samples is not indicated)Excellent (stores gaps too)

Diversity

AverageAverageAverageLow (very few integrations)High (a lot of integrations but a lot of moving parts too)Excellent (a lot of integrations, one moving part)

Scalability

Low (centralized design)Irrelevant (this is the providers’ cost)Irrelevant (this is the providers’ cost)Low (centralized design)Low (centralized design)Excellent (decentralized design)

Data Processing

Latency (work in a beat)

VariableVariableVariableExcellentVariableExcellent

Accuracy

High (failed checks are visualized)Low (missing data are interpolated)Low (missing data are interpolated)Excellent (missing data are important)Low (missing data are interpolated)Excellent (missing or partial data are visualized)

Machine Learning

NoPoor (partial, or no machine learning)Poor (partial, or no machine learning)Poor (partial, or no machine learning)NoExcellent (inline with data collection, for all metrics)

Data Retention

Efficiency

Low (not designed for this)Irrelevant (this is the providers’ cost)Irrelevant (this is the providers’ cost)Low (high-res retention is limited to 24 hours)Low (2+ bytes per sample, gaps are not stored, huge I/O)Excellent (0.5 bytes per sample, storing gaps too, low I/O)

Scalability

Low (centralized design)Irrelevant (this is the providers’ cost)Irrelevant (this is the providers’ cost)Low (centralized design, limited high-res retention)Low (centralized design)Excellent (decentralized design)

Data Visualization

Clarity

HighLow (not easy to grasp the sources contributing, gaps are interpolated)Low (not easy to grasp the sources contributing, gaps are interpolated)Average (not easy to grasp the sources contributing)Low (not easy to grasp the sources contributing)Excellent (multi-facet presentation for every chart, gaps and partial data visualized)

Interactivity

None (not enough data for further analysis)Low (slicing and dicing requires editing queries)HighLow (not enough cardinality for further analysis)Low (slicing and dicing requires editing queries)Excellent (point and click slicing and dicing)

Customizability

None (it is what it is)Average (custom dashboards)High (custom dashboards, integrated)None (it is what it is)High (custom dashboards that can visualize anything)Excellent (custom dashboards with drag and drop, settings per chart)

Real-time Updates

Low (per minute, or upon request)Low (per minute)Average (every 10-seconds)Excellent (per-second)High (every 5-seconds, or on demand)Excellent (per second)

Epilogue

As we draw the curtain on this comprehensive exploration of real-time monitoring and the distinguished position of Netdata in this dynamic landscape, it’s imperative to reflect on the journey that has led us here. The creation and evolution of Netdata is not just a testament to technological innovation but a narrative of commitment to making intricate system data accessible, understandable, and actionable in real-time.

Netdata, born out of the need for immediate, granular, and reliable insights into systems, has evolved into a beacon of excellence in the realm of real-time monitoring. It stands as a testament to the vision of creating a tool that not only meets the technical demands of modern-day infrastructure monitoring but also democratizes access to critical data insights, empowering users across the spectrum of expertise.

The discussions laid out in this blog are more than a showcase of Netdata’s capabilities; they are an invitation to reimagine what real-time monitoring can and should be. They underscore a commitment to a future where operational agility, informed decision-making, and technological resilience are not just ideals but everyday realities.

We extend our heartfelt gratitude to you, the community, for embarking on this journey with us. Your insights, feedback, and engagement have been instrumental in shaping Netdata into the robust solution it is today. As we continue to navigate the ever-evolving technological landscape, our mission remains steadfast—to provide a monitoring solution that is not only real-time but also real-relevant, real-resilient, and real-responsive to the needs of our users.

Thank you for joining us on this journey of exploration, understanding, and innovation. Together, we are not just monitoring the present; we are shaping the future of real-time data interaction, one second at a time.